Working-memory capacity protects model-based learning from stress.

نویسندگان

  • A Ross Otto
  • Candace M Raio
  • Alice Chiang
  • Elizabeth A Phelps
  • Nathaniel D Daw
چکیده

Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of working memory capacity on the learning the relative timing a motor task: Emphasis on implicit and explicit approaches

Abstract The aim of this study was to investigate the role of working memory capacity and errorless and errorful practice on the learning the relative timing was a motor task. 50 Participants based on were selected aged 22±4 years as accessible samples randomly assigned to one of four groups (errorless low working memory capacity, errorful low working memory capacity, errorless high working me...

متن کامل

Effect of Working Memory Training on the Improving Reading Performance and Working Memory Capacity in Children with Dyslexia

Introduction: In recent years, researchers have focused on students who have challenges in learning, and these problems effect on their educational process. This study aimed to investigate the effect of working memory training programs on the improving reading performance and working memory capacity in children with dyslexia. Method: The research method was quasi-experimental. In this regard 30...

متن کامل

The effectiveness of Regolith Educational Model on Attention Level and Working Memory Capacity of Students with Attention Deficit Disorder

Purpose: The aim of this study was to determine the effectiveness of the Rigglus educational model on the level of attention and working memory capacity of students with attention deficit disorder. Methodology: This research is an applied goal in terms of purpose and a quasi-experimental data collection that used a pre-test-post-test design with a control group. The statistical population of t...

متن کامل

The relationship between working memory and L2 reading comprehension

Since  an  important  role  for  working  memory  has  been  found  in  the  first  language acquisition  (e.g.,  Daneman,  1991;  Daneman  &  Green,  1986;  Waters  &  Caplan,  1996), research  on  the  role  of  working  memory  is  emerging  as  an  area  of  concern  for  second language  acquisition  (e.g.,  Atkins  &  Baddeley,  1998;  Miyake  &  Freidman,  1998; Robinson,  1995,  2002,  ...

متن کامل

Pentoxifylline Protects Against Hippocampal Damage and Memory Impairment Induced by Trimethyltin

Background: Trimethyltin (TMT) is a toxic agent that causes oxidative stress, a laboratory model for inducing hippocampal injuries. Pentoxifylline (PTX) inhibits phosphodiesterase, inflammation and oxidative stress. This study evaluated the neuroprotective effects of PTX on injuries induced by TMT in the hippocampus. Methods: Sixty male Wistar rats were divided into five groups of 12 each. Gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 52  شماره 

صفحات  -

تاریخ انتشار 2013